EXPERIMENTS IN FLUIDS
ISSN：0723-4864 volume：59 Issue：1 page：1-19
Burns, Ross A
;
Cadell, Seth R
;
Woods, Brian G
;
Bardet, Philippe M
;
André, Matthieu A

A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high-temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide $$({\rm N}_2{\rm O})$$ ( N 2 O ) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of $${\rm N}_2{\rm O}$$ N 2 O -MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single-shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single-shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cooldown. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short $$(<1\, {\rm s})$$ ( < 1 s ) and long ( $$>30$$ > 30 min) time scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

Experimental data on the flow structure and mass transfer near the boundaries of the region existence of the laminar and turbulent boundary layers with combustion are considered. These data include the results of in-vestigation on reacting flow stability at mixed convection, mass transfer during ethanol evaporation “on the floor” and “on the ceiling”, when the flame surface curves to form the large-scale cellular structures. It is shown with the help of the PIV equipment that when Rayleigh–Taylor instability manifests, the mushroom-like structures are formed, where the motion from the flame front to the wall and back alternates. The cellular flame exists in a narrow range of velocities from 0.55 to 0.65 m/s, and mass transfer is three times higher than its level in the standard laminar boundary layer.;Experimental data on the flow structure and mass transfer near the boundaries of the region existence of the laminar and turbulent boundary layers with combustion are considered. These data include the results of in-vestigation on reacting flow stability at mixed convection, mass transfer during ethanol evaporation “on the floor” and “on the ceiling”, when the flame surface curves to form the large-scale cellular structures. It is shown with the help of the PIV equipment that when Rayleigh–Taylor instability manifests, the mushroom-like structures are formed, where the motion from the flame front to the wall and back alternates. The cellular flame exists in a narrow range of velocities from 0.55 to 0.65 m/s, and mass transfer is three times higher than its level in the standard laminar boundary layer.;Experimental data on the flow structure and mass transfer near the boundaries of the region existence of the laminar and turbulent boundary layers with combustion are considered. These data include the results of in-vestigation on reacting flow stability at mixed convection, mass transfer during ethanol evaporation “on the floor” and “on the ceiling”, when the flame surface curves to form the large-scale cellular structures. It is shown with the help of the PIV equipment that when Rayleigh–Taylor instability manifests, the mushroom-like structures are formed, where the motion from the flame front to the wall and back alternates. The cellular flame exists in a narrow range of velocities from 0.55 to 0.65 m/s, and mass transfer is three times higher than its level in the standard laminar boundary layer.

A method for determining the thermodynamic (true) temperature of opaque materials by the registered spectrum of thermal radiation under the conditions when we do not know emissivity of a free-radiating body is presented. A special function, which is a product of relative emissivity of tungsten by the radiation wavelength, was used as the input data. The accuracy of results is analyzed. It is shown that when using relative emissivity, the proposed algorithm can be used both within the range of applicability of the Wien approximation and the Planck formula.;A method for determining the thermodynamic (true) temperature of opaque materials by the registered spectrum of thermal radiation under the conditions when we do not know emissivity of a free-radiating body is presented. A special function, which is a product of relative emissivity of tungsten by the radiation wavelength, was used as the input data. The accuracy of results is analyzed. It is shown that when using relative emissivity, the proposed algorithm can be used both within the range of applicability of the Wien approximation and the Planck formula.;A method for determining the thermodynamic (true) temperature of opaque materials by the registered spectrum of thermal radiation under the conditions when we do not know emissivity of a free-radiating body is presented. A special function, which is a product of relative emissivity of tungsten by the radiation wavelength, was used as the input data. The accuracy of results is analyzed. It is shown that when using relative emissivity, the proposed algorithm can be used both within the range of applicability of the Wien approximation and the Planck formula.

The aim of the review is to assess the value of model experimental studies for the development of classical rotor aerodynamics as well as to describe the most significant recent results stimulated by intense development of wind power.;The aim of the review is to assess the value of model experimental studies for the development of classical rotor aerodynamics as well as to describe the most significant recent results stimulated by intense development of wind power.;The aim of the review is to assess the value of model experimental studies for the development of classical rotor aerodynamics as well as to describe the most significant recent results stimulated by intense development of wind power.

The expedience of using the ratio of inertial β and viscous α hydraulic coefficients of a fluid flow in porous structures as the characteristic linear scale, when generalizing the experimental data on internal heat transfer in porous media, is shown. It is demonstrated that the correlation Nu = A · Pe, with both criteria based on β/α ratio, most efficiently describes the experimental data for a wide set of ordered and disordered porous structures, including sintered spheres, network materials, sintered felt and cellular foams of high porosity. The coefficient A depends on porosity and is equal to 0.004 for spheres, networks and felts, and 0.0004 for foams. For any specific case the values of α and β coefficients can be readily obtained from testing materials under consideration, control samples, or full-scale articles.;The expedience of using the ratio of inertial β and viscous α hydraulic coefficients of a fluid flow in porous structures as the characteristic linear scale, when generalizing the experimental data on internal heat transfer in porous media, is shown. It is demonstrated that the correlation Nu = A · Pe, with both criteria based on β/α ratio, most efficiently describes the experimental data for a wide set of ordered and disordered porous structures, including sintered spheres, network materials, sintered felt and cellular foams of high porosity. The coefficient A depends on porosity and is equal to 0.004 for spheres, networks and felts, and 0.0004 for foams. For any specific case the values of α and β coefficients can be readily obtained from testing materials under consideration, control samples, or full-scale articles.;The expedience of using the ratio of inertial β and viscous α hydraulic coefficients of a fluid flow in porous structures as the characteristic linear scale, when generalizing the experimental data on internal heat transfer in porous media, is shown. It is demonstrated that the correlation Nu = A · Pe, with both criteria based on β/α ratio, most efficiently describes the experimental data for a wide set of ordered and disordered porous structures, including sintered spheres, network materials, sintered felt and cellular foams of high porosity. The coefficient A depends on porosity and is equal to 0.004 for spheres, networks and felts, and 0.0004 for foams. For any specific case the values of α and β coefficients can be readily obtained from testing materials under consideration, control samples, or full-scale articles.

The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite?argon” and “irradiated graphite?helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.;The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite?argon” and “irradiated graphite?helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.;The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite?argon” and “irradiated graphite?helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.

Thermophysics and Aeromechanics
ISSN：0869-8643 volume：25 Issue：1 page：21-30
Minakov, A V
;
Platonov, D V
;
Abramov, A V
;
Maslennikova, A V
;
Dekterev, D A

In the present study, we report on the results of an experimental study of pressure pulsations in the flow duct of a medium-scale hydrodynamic bench with Francis turbine. In various regimes, integral and pulsation characteristics of the turbine were measured. With the help of high-speed filming, the structure of the flow behind the turbine runner was analyzed, and the influence of this structure on the intensity and frequency of pressure pulsations in the flow duct was demonstrated.;In the present study, we report on the results of an experimental study of pressure pulsations in the flow duct of a medium-scale hydrodynamic bench with Francis turbine. In various regimes, integral and pulsation characteristics of the turbine were measured. With the help of high-speed filming, the structure of the flow behind the turbine runner was analyzed, and the influence of this structure on the intensity and frequency of pressure pulsations in the flow duct was demonstrated.;In the present study, we report on the results of an experimental study of pressure pulsations in the flow duct of a medium-scale hydrodynamic bench with Francis turbine. In various regimes, integral and pulsation characteristics of the turbine were measured. With the help of high-speed filming, the structure of the flow behind the turbine runner was analyzed, and the influence of this structure on the intensity and frequency of pressure pulsations in the flow duct was demonstrated.

We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium–indium–tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.;We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium–indium–tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.

The study is devoted to the establishment of regularities in the process of liquid-droplet breakup in the vortex wake behind pylon at high subsonic airspeeds. The article describes the laboratory setup, the diagnostic tools, and the experimental procedure. Structure of the unsteady gas flow behind pylon was examined, and the main characteristics of the generated vortex wake were evaluated. Experimental data concerning the variation of droplet diameters in the gas-dynamic fractionation process versus the flow conditions and liquid injection regimes were obtained. Typical distribu-tions of droplet diameters and velocities in the vortex wake behind pylon are reported. A comparison of experimental data on the rate of the gas-dynamic fractionation process with calculations made using previously developed evaluation procedures was performed. The results of the study may prove useful when choosing the configuration of systems for implementation of liquid injection into a high-speed flow and, also, for validation of mathematical models intended for calculation of parameters of two-phase flows.;The study is devoted to the establishment of regularities in the process of liquid-droplet breakup in the vortex wake behind pylon at high subsonic airspeeds. The article describes the laboratory setup, the diagnostic tools, and the experimental procedure. Structure of the unsteady gas flow behind pylon was examined, and the main characteristics of the generated vortex wake were evaluated. Experimental data concerning the variation of droplet diameters in the gas-dynamic fractionation process versus the flow conditions and liquid injection regimes were obtained. Typical distribu-tions of droplet diameters and velocities in the vortex wake behind pylon are reported. A comparison of experimental data on the rate of the gas-dynamic fractionation process with calculations made using previously developed evaluation procedures was performed. The results of the study may prove useful when choosing the configuration of systems for implementation of liquid injection into a high-speed flow and, also, for validation of mathematical models intended for calculation of parameters of two-phase flows.;The study is devoted to the establishment of regularities in the process of liquid-droplet breakup in the vortex wake behind pylon at high subsonic airspeeds. The article describes the laboratory setup, the diagnostic tools, and the experimental procedure. Structure of the unsteady gas flow behind pylon was examined, and the main characteristics of the generated vortex wake were evaluated. Experimental data concerning the variation of droplet diameters in the gas-dynamic fractionation process versus the flow conditions and liquid injection regimes were obtained. Typical distribu-tions of droplet diameters and velocities in the vortex wake behind pylon are reported. A comparison of experimental data on the rate of the gas-dynamic fractionation process with calculations made using previously developed evaluation procedures was performed. The results of the study may prove useful when choosing the configuration of systems for implementation of liquid injection into a high-speed flow and, also, for validation of mathematical models intended for calculation of parameters of two-phase flows.